Dependent double branching annihilating random walk
نویسندگان
چکیده
منابع مشابه
Dependent double branching annihilating random walk
Double (or parity conserving) branching annihilating random walk, introduced in [19], is a one-dimensional non-attractive particle system in which positive and negative particles perform nearest neighbor hopping, produce two offsprings to neighboring lattice points and annihilate when they meet. Given an odd number of initial particles, positive recurrence as seen from the leftmost particle pos...
متن کاملSurvival and Extinction of Caring Double-branching Annihilating Random Walk
Branching annihilating random walk (BARW) is a generic term for a class of interacting particle systems on Z in which, as time evolves, particles execute random walks, produce offspring (on neighbouring sites) and (instantaneously) disappear when they meet other particles. Much of the interest in such models stems from the fact that they typically lack a monotonicity property called attractiven...
متن کاملOn Survival and Extinction of Caring Double-branching Annihilating Random Walk
Branching annihilating random walk (BARW) is a generic term for a class of interacting particle systems on Z in which, as time evolves, particles execute random walks, produce offspring (on neighbouring sites) and (instantaneously) disappear when they meet other particles. Much of the interest in such models stems from the fact that they typically lack a monotonicity property called attractiven...
متن کاملCentral Limit Theorem in Multitype Branching Random Walk
A discrete time multitype (p-type) branching random walk on the real line R is considered. The positions of the j-type individuals in the n-th generation form a point process. The asymptotic behavior of these point processes, when the generation size tends to infinity, is studied. The central limit theorem is proved.
متن کاملCritical behavior of an even-offspringed branching and annihilating random-walk cellular automaton with spatial disorder.
A stochastic cellular automaton exhibiting a parity-conserving class transition has been investigated in the presence of quenched spatial disorder by large-scale simulations. Numerical evidence has been found that weak disorder causes irrelevant perturbation for the universal behavior of the transition and the absorbing phase of this model. This opens up the possibility for experimental observa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Probability
سال: 2015
ISSN: 1083-6489
DOI: 10.1214/ejp.v20-4045